NOISE AND VIBRATION

In addition to the basic requirements on a bearing like load capacity, speed limit and life time; low noise and vibration is becoming more and more important in most applicatons. Vibrations in bearings are caused by time varying forces in bearings. The contact forces move around the bearing, giving rise to perfect bearing vibrations in the outer ring. It is wellknown that excecssive vibrations can cause premature failure and costly maintenance, often including unplanned downtime and loss of production. High vibration levels also increase energy consumption. High noise levels, in turn, result in a poorer life environment for personnel and family. Therefore, to find out the roof causes of noise \& vibration and prevent potential from the beginning is critical to perfect performance of the bearings.

Vibration Rising and Countermeasures

HCH is making 100% such noise and vibration testing before every single bearing leaves the factory. Also, HCH has recently significantly improved design of deep groove ball bearings, to further reduce noise and vibration levels.

Customers need to pay attention when coming across the following conditions.

Types	Description	Causes	Countermeasures
Self-Generated Vibration	Vibration generated from the bearing itself when it is in the rotating condition.	Variations of circular form in the bearing balls and raceway.	Can not be avoided, but could reduce the vibration level by selecting the proper clearance due to the application.
Vibration Arising from Exposure to External	Disturbed noises occur with the performance degrades of bearings in modes known as wear oxidation or fretting corrosion.	The contaminated surrounding environment affects bearing. Loaded bearings operate without sufficient lubrication.	These conditions can be relieved by properly designed isolation supports and adequate lubrication.
Vibration from Misalignment	Not well-aligned bearings make noise when they are rotating.	Bearings are not well aligned on the shafts or houses during installation. The shafts and houses are not accurate.	Good alignment methods and special alignment tools to reduce vibration. Applying high accuracy shafts and houses.
Local Damage Vibration	The small damaged sections on the raceways and rolling elements generate a specific vibration frequency.	Mishandling or incorrect mounting.	Applying correct mounting methods and mechanical tools such as fitting tools. Applying induction heaters with time control and preset temperature mode.

Noise \& vibration testing

The vibration and noise of bearings are classified as four classes measured by BVT-1 and classified as $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ and V_{4}

d mm	V			V_{1}			V_{2}			V_{3}			V_{4}		
	$\begin{aligned} & \text { Low } \\ & \text { Band } \end{aligned}$	$\begin{array}{\|c} \hline \text { Medium } \\ \text { Band } \end{array}$	$\begin{aligned} & \text { High } \\ & \text { Band } \end{aligned}$	$\begin{aligned} & \text { Low } \\ & \text { Band } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \text { Bedium } \\ \text { Band } \end{array}$	High	$\begin{aligned} & \text { Low } \\ & \text { Band } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Medium } \\ \text { Band } \end{array}$	High	$\begin{aligned} & \text { Low } \\ & \text { Band } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Medium } \\ \text { Band } \end{array}$	High Band	$\begin{aligned} & \text { Low } \\ & \text { Band } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \text { Band } \\ \hline \end{array}$	High Band
65	300	260	420	180	160	240	130	100	150	105	80	105	50	50	75
70	360	310	460	200	180	280	150	120	200	110	90	135	58	58	88
75	360	310	460	200	180	280	150	120	200	110	90	135	58	58	88
80	420	360	540	240	210	320	180	120	240	130	110	160	65	65	100
85	420	360	540	240	210	320	180	120	240	130	110	160	65	65	100
90	480	420	600	290	250	370	210	180	270	145	125	180	75	75	115
95	480	420	600	290	250	370	210	180	270	145	125	180	75	75	115
100	560	490	670	340	300	420	250	215	310	170	145	200	88	88	135
105	560	490	670	340	300	420	250	215	310	170	145	200	88	88	135
110	640	570	750	400	350	480	290	260	350	190	175	225	100	100	160
115	640	570	750	400	350	480	290	260	350	190	175	225	100	100	160

d mm	V			V_{1}			V_{2}			V_{3}		
	$\begin{aligned} & \text { Low } \\ & \text { Band } \end{aligned}$	$\begin{aligned} & \text { Medium } \\ & \text { Band } \end{aligned}$	High Band	$\begin{aligned} & \text { Low } \\ & \text { Band } \end{aligned}$	$\begin{aligned} & \text { Medium } \\ & \text { Band } \end{aligned}$	High	$\begin{aligned} & \text { Low } \\ & \text { Band } \end{aligned}$	$\begin{gathered} \text { Medium } \\ \text { Band } \end{gathered}$	High	$\begin{aligned} & \text { Low } \\ & \text { Band } \end{aligned}$	$\begin{gathered} \text { Medium } \\ \text { Band } \end{gathered}$	$\begin{aligned} & \text { High } \\ & \text { Band } \end{aligned}$
15	310	500	500	220	360	360	150	220	220	100	100	100
17	330	550	550	240	400	400	170	240	240	110	110	110
20	330	550	550	240	400	400	170	240	240	110	110	110
25	360	590	600	280	440	450	210	280	280	120	140	130
30	360	590	600	280	440	450	210	280	280	120	140	130
35	400	640	670	320	480	500	250	320	300	150	180	160
40	440	690	740	360	530	560	280	350	320	170	210	190
45	440	690	740	360	530	560	280	350	320	170	210	190
50	480	750	810	400	600	620	320	400	360	220	260	240
55	480	750	810	400	600	680	320	400	360	220	260	240
60	530	850	1000	450	680	760	370	460	420	300	330	300

dB noise testing

The noise of bearings by dB is classified as four classes as $\mathrm{Z1}, \mathrm{Z2}, \mathrm{Z3}$ and $\mathrm{Z4}$. It is measured by the instrument of S0910-1.

Maximum vibration acceleration of single bearing Tolerance in dB															
$\begin{gathered} d \\ \mathrm{~mm} \end{gathered}$	Diameter Series (0)					Diameter Series (2)					Diameter Series (3)				
	Z	Z_{1}	Z_{2}	Z_{3}	Z_{4}	Z	Z_{1}	Z_{2}	Z_{3}	Z_{4}	Z	Z_{1}	Z_{2}	Z_{3}	Z_{4}
3	35	34	32	${ }^{28}$	24	36	35	32	30	26	37	${ }^{36}$	${ }^{33}$	${ }^{31}$	27
4	35	34	32	28	24	36	35	32	30	26	37	36	33	31	27
5	37	36	34	30	26	38	37	34	32	28	39	37	35	33	29
6	37	36	34	30	26	38	37	34	32	28	39	37	35	33	29
7	39	38	35	31	27	40	38	36	34	29	41	39	37	35	30
8	39	38	35	31	27	40	38	36	34	29	41	39	37	35	30
9	41	40	36	32	28	42	40	37	35	30	43	41	39	37	32
10	43	42	38	${ }^{3}$	28	44	42	39	35	30	46	44	40	37	32
12	44	43	39	34	29	45	43	39	35	30	47	45	40	37	32
15	45	44	40	35	30	46	44	41	36	31	48	46	42	38	33
17	46	44	40	35	30	47	45	41	36	31	49	47	42	38	33
20	47	45	41	36	31	48	46	42	38	${ }^{33}$	50	48	43	39	34
22	47	45	41	36	31	48	46	42	38	33	50	48	43	39	34
25	48	46	42	38	34	49	47	43	40	36	51	49	44	41	37
28	49	47	${ }^{43}$	39	35	50	48	44	41	37	52	50	45	42	38
30	49	47	${ }^{43}$	39	35	50	48	44	41	37	52	50	45	42	38
32	50	48	44	40	36	51	49	45	42	38	53	51	46	43	39
35	51	49	45	41	37	52	50	46	43	39	54	52	47	44	40
40	53	51	46	42	38	54	52	47	44	40	56	54	49	45	41
45	55	53	48	45	42	56	54	49	46	43	58	56	51	47	44
50	57	54	50	47	44	58	55	51	48	45	60	57	53	49	46
55	59	56	52	49	46	60	57	53	50	47	62	59	54	51	48
60	61	58	54	51	48	62	59	54	51	48	64	61	56	53	50

Discord sound testing

dB noise testing is a traditional noise measurement which can only give a general idea of bearing quality by their noise level. Vibration measurements are of great importance for high-quality bearing production which is applied widespread over the world famous bearing manufacturers. HCH's bearings are 100% tested by noise and vibration measurements.

However, besides waviness, roundness and non-adequate lubrication etc., a noise application can lead the unreliable bearing performance which can also be caused by local defects, dirt particles and cage problems. In addition, HCH is also implementing 100% discord sound testing of bearings, which can test and detect all of these bearing quality issues. Following table lists common types of discord sound, their causes as well as countermeasures.

Causes of discord sound and countermeasures

Familiar discord sound	Cause	Countermeasure
Squeak	This is a dense and strident squeak just like noise when steel is sawed by saw blade and the wave crest occurs rhythmically. It will be specific reflected by BVT-1 equipment via high band: the pointer will rise and fluctuate. The amplitude is changing ac- cording to the intensity of noise. This kind of noise is the most deleterious. It is mainly caused by sur- face bumping (knocking) between the ball and raceway.	1. Choose the ball with surface strengthened. 2. Strictly control the quality of ball's surface (flaw, stripe, black spot and surface scuffing). 3. Strictly control the bumping (knocking) hurt of inner and outer raceway.
Chatter	This kind of noise is arrhythmic noise when grease or impurity is rolled. Sometimes it occurs and sometime it's gone. When this noise appears, the high band's pointer of BVT-1 equipment rises suddenly. The amplitude is changing according to the intensity of noise. It is closely related to the cleanliness of bearings, anti-rust oil and impurity of grease.	1. Do the inspection and control of bearing cleanliness. 2. Choose the anti-rust oil and grease with low impurity(namely high cleanli- ness anti-rust oil and grease).
Ripple	When hum appears, normally the read of the low band of BVT-1 equipment is high. Louder the noise is, higher the read will be. This sound is closely related to the noise rising of the machine. It is related to the roundness and accuracy of bearing's inner and outer raceway.	Strictly control roundness of raceway.
Sounds like the clop.	A kind of high-frequent noise which is symmetrical, ringing and continuous. The read of high band of BVT-1 equipment is a little bit higher which will in- crease the noise of the finished products. It is re- lated to the raceway's chatter mark. reflecting the defect of the raceway waviness.	Strict control inner and outer race's un- dulation variation (monitor by Round- ness \& Waviness meter).

